Math 255A Lecture 26 Notes

Daniel Raban

November 30, 2018

1 Applications of Banach-Alaoglu

1.1 Banach-Alaoglu for separable Banach spaces

Last time, we stated the following proposition.

Proposition 1.1. If G is separable with the dense subset $\{x_1, x_2, ...\}$, then the seminorms $\xi \mapsto |\langle x_j, \xi \rangle|$ for $\xi \in U = \{\xi : ||x|| \le 1\}$ and j = 1, 2, ... define the same topology as $\sigma(B^*, B)$ on U.

Proof. It sufficies to check that if $O \subseteq U$ is open for $\sigma(B^*, B)$, then O is open for the topology determined by these seminorms. Let $\xi_0 \in U$ and N be an open neighborhood of ξ_0 in $\sigma(B^*, B)$. We can assume that $N = \{\xi \in U : |\langle y_j, \xi - \xi_0 \rangle| < \varepsilon \ \forall 1 \leq j \leq M\}$. We claim that N contained a neighborhood of ξ_0 in the topology defined by the seminorms. For each $j \in \{1, \ldots, M\}$, pick k_j such that $||y_j - x_{k_j}|| < \varepsilon/4$. If $|\langle x_{k_j}, \xi - \xi_0 \rangle| < \varepsilon/2$ for $1 \leq j \leq M$, then

$$|\langle y_j, \xi - \xi_0 \rangle| \leq \underbrace{|\langle y_j - x_{k_j}, \xi - \xi_0 \rangle|}_{\leq ||y_j - x_{k_j}|| \|\xi - \xi_0|| < \varepsilon/2} + \underbrace{|\langle x_{k_j}, \xi - \xi_0 \rangle|}_{<\varepsilon/2} < \varepsilon$$

for all $\xi \in N$ and $1 \leq j \leq M$. Then $N \supseteq \{\xi \in U : |\langle x_{k_j}, \xi - \xi_0 \rangle| < \varepsilon/2, 1 \leq j \leq M\}$, and the result follows.

Corollary 1.1. If B is separable, then $U = \{\xi \in B^* : ||\xi|| \le 1\}$ is a complete metrizable space for $\sigma(B^*, B)$.

Example 1.1. Let $f_n \in L^p(\mathbb{R}^d)$ for $1 be bounded: <math>||f_n||_{L^p} \leq C$. Then there exists a subsequence f_{n_k} and $f' \in L^p$ such that

$$\int f_{n_k}g\,dx \to \int fg\,dx$$

for $g \in L^q$ with 1/p + 1/q = 1.

When p = 1, $L^1(\mathbb{R}^d) \subseteq M(\mathbb{R}^d)$, the space of bounded measures on \mathbb{R}^d . If $||f_n||_{L^1} \leq C$, then there exists a subsequence f_{n_k} and a $\mu \in M(\mathbb{R}^d)$ such that

$$\int f_{n_k} g \, dx \to \int g d\mu$$

for all $g \in C_0(\mathbb{R}^d)$, the space of functions which vanish at ∞ .

1.2 Applications of Banach-Alaoglu to minimizing functionals

Definition 1.1. A Banach space *B* is **reflexive** if the natural linear isometry $J : B \to B^{**}$ sending $x \mapsto (\xi \mapsto \langle x, \xi \rangle)$ is a bijection.

Proposition 1.2 (Minimization of functionals¹). Let B be a reflexive Banach space with B^* separable, and let $J: B \to \mathbb{R}$ be a function such that

- 1. J is convex: $J(\lambda u + (1 \lambda)v) \leq \lambda J(u) + (1 \lambda)J(v)$ fir $0 \leq \lambda \leq 1$ and $u, v \in B$.
- 2. J is norm lower semicontinuous: For all $x \in \mathbb{R}$, the set $\{u \in B : J(u) > a\}$ is open iff if $u_n \to u_0$ in B, then $J(u_0) \leq \liminf_{n \to \infty} J(u_n)$.
- 3. J is coercive: There exists C > 1 such that $J(u) \ge ||u||^q/C C$ for all u, for some $q \ge 1$.

In particular, $\mu = \inf_{u \in B} J(u) > -\infty$. Then there exists some $u_0 \in B$ such that $J(u_0) = \mu$.

Proof. Let $u_n \in B$ be such that $J(u_n) \to \mu$. Property 3 implies that (u_n) is bounded: $||u_n|| \leq C$. By Banach-Alaoglu, there exists a subsequence (u_{n_k}) and $u_0 \in B$ such that $u_{n_k} \to u_0$ in $\sigma(B, B^*)$. Now J is convex norm lower semicontinuous, so $\{u \in B : J(u) \leq a\}$ is closed and convex. By convexity, it is weakly closed, so J is lower semicontinuous with respect to $\sigma(B, B^*)$. If $u_{n_k} \to u_0$ in $\sigma(B, B^*)$, then $H(u_0) \leq \liminf J(u_{n_k}) = \mu$, and we get the claim.

Here is a concrete application.

Example 1.2. Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded and let $H^1(\Omega) = \{u \in L^2(\Omega) : \partial_{x_j} u \in L^2(\Omega) \ \forall 1 \leq j \leq n\}$ be a Hilbert space with the inner product $\langle u, v \rangle_{H^1} = \langle u, v \rangle_{L^2} + \langle \nabla u, \nabla v \rangle_{L^2}$. Define $H^1_0(\Omega)$ to be the closure of $C_0^{\infty}(\Omega)$ in $H^1(\Omega)$. This is not all of H^1 ; roughly, $u \in H^1_0(\Omega)$ iff $u \in H^1(\Omega)$ and " $u|_{\partial\Omega} = 0$."

Apply the abstract discussion when $B = H_0^1(\Omega)$ and $J(u) = (1/2) \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f u dx$ where $f \in L^2(\Omega)$.² We claim that there exists some $u_0 \in H_0$ which is a minimizer of J. Observe that:

 $^{^1\}mathrm{This}$ application comes from calculus of variations.

 $^{^2\}mathrm{This}$ is sometimes called the Dirichlet functional.

- 1. J is convex.
- 2. J is continuous.
- 3. J is coercive: $J(u) \ge \|\nabla u\|_{L^2}^2 \|f\|_{L^2} \|u\|_{L^2} \ge \|\nabla u\|_{L^2}^2 \varepsilon \|u\|_{L^2} (1/\varepsilon) \|f\|_{L^2}^2$. Since $\|u\|_{L^2} \le C \|\nabla u\|_{L^2}$ for $u \in C_0^\infty$, we get $J(u) \ge (1/C) \|u\|_{H^2}^2 C$.

So we have a minimizer $J(u_0) \leq J(u_0 + \varepsilon v)$ for all ε . Then

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} J(u_0 + \varepsilon v) = 0,$$

where $-\Delta u_0 = f$ and $u_0 \in H_0(\Omega)$.